Pion Scattering Measurements

Jake Calcutt NuSTEC Pion Workshop October 4, 2019

Motivation

Pion - Nucleus Interactions

DUET

- For T2K
- For NOvA

LARIAT

ProtoDUNE-SP

Outlook (Feed into discussion)

Why Measure Pion Scattering?

Pion Absorbed in Nucleus Final State Interactions (FSI)

Pion Absorbed in Detector Secondary Interactions (SI)

π-Nucleus Interactions

Charge Exchange

Inelastic/Quasi-elastic

Absorption

N -- Nucleons + Nuclear Fragments

π-Nucleus Interactions

Pion Production

Dual Use Experiment at TRIUMF -- DUET

Pinzon Guerra et. al, Phys. Rev. C 95, 045203, 2017

 π^{+} - Carbon scattering experiment at TRIUMF

Scintillating fibers used as target + tracking (PIAvO)

Scintillating fibers used for EM showers (CEMBALOS)

Measured Absorption & Charge Exchange (Combined + Separate)

DUET -- Cross Section

leki et. al, Phys. Rev. C 92, 035205, 2015

Abs+CX: Select any π interaction with no charged π in finall state

Pinzon Guerra et. al, Phys. Rev. C 95, 045203, 2017

CX: Require photon in **CEMBALOS**

leki et. al, Phys. Rev. C 92, 035205, 2015

$$\begin{split} \sigma_{\text{ABS+CX}} &= \sigma_{\text{ABS+CX}}^{pred} \times \frac{N_{\text{data}} - N_{\text{BG}}^{pred}}{N_{\text{sig}}^{pred}} \\ &\times \frac{1 - R_{\text{TiO}}^{data}}{1 - R_{\text{TiO}}^{\text{MC}}} \times \frac{1}{1 - f_{\mu}} \end{split}$$

Pinzon Guerra et. al, Phys. Rev. C 95, 045203, 2017

$$\sigma_{\rm CX} = \sigma_{\rm CX}^{\rm MC} \times \frac{N_{\rm Data} - N_{\rm BG}^{\rm MC}}{N_{\rm CX}^{\rm MC}} \times \frac{1 - R_{\rm TiO_2}^{\rm Data}}{1 - R_{\rm TiO_2}^{\rm MC}} \times \frac{1}{1 - f_{\mu}}.$$
 (2)

 σ_{ABS} was obtained by subtracting σ_{CX} from σ_{ABS+CX} obtained in Ref. [25].

Used selected events to scale the Geant4 cross section

Correct for background muons (f_{μ})

Correct for interactions on fiber coatings (R_{TiO}^{x})

DUET Results

Measured Absorption & Charge Exchange (Combined + Separate)

Improvement over past measurements: Published covariance

DUET Use in T2K

T2K uses **NEUT** for their neutrino interaction modelling

- Set of tunable parameters controlling π[±] - FSI in the cascade
- π scattering routine used to compare to external data on multiple nuclei (including DUET)

Resulted in a tune for NEUT's cascade model

Pinzon Guerra et. al, Phys. Rev. D 99, 052007 2019

DUET Use in NOVA

Background to CC1 π^{0} measurement includes CC1π⁺ with $\Pi^+ \rightarrow \Pi^0$

Used DUET charge exchange data to constrain this

Thesis, Dan Pershey, Caltech 2018

Liquid Argon In A Testbeam -- LArIAT

Repurposed Argoneut TPC placed in a testbeam at FNAL

Thesis, Elena Gramellini, Yale 2018

LArTPC Cross Sections -- Thin Slices

- Estimate the energy at each slice (using calorimetry info)
 - Fill the **Incident** histogram (bottom) for each slice's energy
- Determine interaction point
 - Passes signal selection?
 - Fill Interacting (top) histogram

LArIAT Selection

Recent thesis results (next page) for total π^{\pm} - Ar σ

Note: Inefficiency for reconstructing low-angle scatters (< 5°)

Thesis, Elena Gramellini, Yale 2018

LArIAT Results (Preliminary)

Disagreement in the negative π cross section with Geant4 at high energies and in resonance region

LArIAT notes this is could be due to a (possibly unknown) systematic uncertainty

Thesis, Elena Gramellini, Yale 2018

LArIAT Results (Preliminary)

Disagreement in the positive π cross section with Geant4 as well

Noted in the thesis that this could be due to a misunderstanding of the beam composition or other systematic

Thesis, Gregory Pulliam, Syracuse 2019

ProtoDUNE -- Single Phase

400T FV LArTPC operating in a testbeam at CFRN

Took beam data Oct. - Nov. 2018

Proposed 2nd run in 2021 (after CERN's Long Shutdown 2)

Abi, B. et al., The Single-Phase ProtoDUNE Technical Design Report, 2017, Fermilab-Design-2017-02

Total Cross Section

Challenge: reconstructing low-angle scatters (similar to LArIAT)

Right: vertex identification efficiency for protons (similar to pions)

Work ongoing to develop/improve alternate vertex reconstruction

Heng-Ye Liao, DUNE Collaboration Meeting, May 2019

Quasi-Elastic Scattering

Talk given at Sep. '19 DUNE CM trying to convince someone to take up this analysis for useful model constraints.

Motivated by a measurement from KEK: *PRC 64, 034608 (2001).*

Combined Absorption + Charge Exchange (my work)

Abs. can probe NN + multinucleon (per Jerry Miller's talk)

Signal: no charged pions in final state (proton-like tracks ok)

Need to redefine/refine measurement?

Not sensitive to multiple π^0 (small fraction) and below-threshold π^\pm

What is good for theorists/model builders? (Discussion)

Separate Absorption + Charge Exchange

Extension on previous slide. Requires good ability on identifying π^0 showers, then get the separate cross sections 'for free'

Can then categorize the absorption events by proton multiplicity

Neutrons could be difficult to tag -- possibly preventing any categorization by neutron multiplicity

Future Measurements (ProtoDUNE)

What do theorists/model builders want?

Thanks For Listening

Backup Slides

Cascade Models

Neutrino event generators and particle transport simulations

Hadrons take a series of steps throughout the nucleus

Possibility of interaction

Interaction occurs: the products are **added to the 'stack'** of active particles

Process repeats until all active particles are **absorbed** or leave nucleus

LArIAT Beamline

Thesis, Elena Gramellini, Yale 2018

ProtoDUNE Beamline

ProtoDUNE Beam Run + Stats

Beam Momentum (GeV/c)	Estimated Pi-Like Beam Triggers
0.5	1.5 k
1	381 k
2	333 k
3	284 k
6	394 k
7	343 k

Package to handle systematics related to pion scattering by:

- 1. **Fitting** Geant4 predictions to external data
- 2. **Reweighting** Geant4 tracks given some variation to the interaction cross sections

https://cdcvs.fnal.gov/redmine/projects/geant4reweight/

Example fits: π^+ -- C scattering

Fit parameters are binned variations which scale the cross sections

Construct sets of variations (i.e. "toy experiments", "many universes") using fit

results

0.0151

0.0000

0.0000

0.0037

-0.0000

-0.0009

-0.0000

0.0024

0.0000

Create variations from throws and use in reweighting

See effect on observables (Simple case)

Consider a variation to the inelastic cross cross section: $\sigma \rightarrow \sigma'$

Within a track: the pion takes steps with a change of udnergoing an Inelastic interaction each step

- Real process choice is relatively complicated
- But for these purposes, can be approximated as

a)
$$P_{\text{no inter}} \sim e^{-L\sigma}$$

b)
$$P_{inter} \sim 1 - e^{-L\sigma}$$

If a pion track ends without an inelastic interaction (i.e it leaves the tracking region, or undergoes a different process, etc.) assign weights for all steps of form **a**

$$W_{surv} = \frac{e^{-\sum_{i=1}^{N} \sigma_i' L_i}}{e^{-\sum_{i=1}^{N} \sigma_i L_i}}$$

Consider a variation to the inelastic cross cross section: $\sigma \rightarrow \sigma'$

Within a track: the pion takes steps with a change of udnergoing an Inelastic interaction each step

- Real process choice is relatively complicated
- But for these purposes, can be approximated as

a)
$$P_{\text{no inter}} \sim e^{-L\sigma}$$
 b) $P_{\text{inter}} \sim 1 - e^{-L\sigma}$

If a pion track ends with an inelastic interaction, assign weights for all steps before the last of form a, replace last with b

$$W_{int} = \left(\frac{1 - e^{-\sigma'_N L_N}}{1 - e^{-\sigma_N L_N}}\right) \left(\frac{e^{-\sum_{i=1}^{N-1} \sigma'_i L_i}}{e^{-\sum_{i=1}^{N-1} \sigma_i L_i}}\right)$$